Measure of nodal sets of analytic Steklov eigenfunctions
Abstract
Let $(\Omega, g)$ be a real analytic Riemannian manifold with real analytic boundary $\partial \Omega$. Let $\psi_{\lambda}$ be an eigenfunction of the Dirichlet-to-Neumann operator $\Lambda$ of $(\Omega, g, \partial \Omega)$ of eigenvalue $\lambda$. Let $\mathcal N_{\lambda_j}$ be its nodal set. Then $\mathcal H^{n-2} (\mathcal N_{\lambda}) \leq C_{g, \Omega} \lambda.$ This proves a conjecture of F. H. Lin and K. Bellova.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2014
- DOI:
- 10.48550/arXiv.1403.0647
- arXiv:
- arXiv:1403.0647
- Bibcode:
- 2014arXiv1403.0647Z
- Keywords:
-
- Mathematics - Spectral Theory
- E-Print:
- Math. Res. Lett. Volume 22, Number 6, 1821-1842, 2015