Inequality for Burkholder's martingale transform
Abstract
We find the sharp constant $C=C(\tau,p, \mathbb{E}G, \mathbb{E}F)$ of the following inequality $\|(G^{2}+ \tau^{2} F^{2})^{1/2} \|_{p} \leq C \|F\|_{p},$ where $G$ is the transform of a martingale $F$ under a predictable sequence $\varepsilon$ with absolute value 1, $1<p< 2$, and $\tau$ is any real number.
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2014
- DOI:
- arXiv:
- arXiv:1402.4751
- Bibcode:
- 2014arXiv1402.4751I
- Keywords:
-
- Mathematics - Analysis of PDEs;
- 42B20;
- 42B35;
- 47A30
- E-Print:
- 34 pages, 13 figures