Peak Solutions for the fractional Nirenberg problem
Abstract
In this paper, the fractional order curvature equation $(-\Delta)^\gamma u = (1 + \varepsilon K(x))u^{\frac{N + 2\gamma}{N - 2\gamma}}$ in $\mathbb{R}^N$ is considered. Assuming $K(x)$ has two critical points satisfying certain local conditions, we prove the existence of two-peak solutions.
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2014
- DOI:
- 10.48550/arXiv.1402.0356
- arXiv:
- arXiv:1402.0356
- Bibcode:
- 2014arXiv1402.0356C
- Keywords:
-
- Mathematics - Analysis of PDEs;
- Mathematics - Differential Geometry