Marrying ab initio calculations and Halo EFT: the case of ${}^7{\rm Be} + p \rightarrow {}^8{\rm B} + \gamma$
Abstract
We report a leading-order (LO) calculation of $^7\mathrm{Be}(p,\gamma)^8\mathrm{B}$ in a low-energy effective field theory. $^8\mathrm{B}$ is treated as a shallow proton$+^7\mathrm{Be}$ core and proton$+^7\mathrm{Be}^{*}$ (core excitation) $p$-wave bound state. The couplings are fixed using measured binding energies and proton-$^7\mathrm{Be}$ $s$-wave scattering lengths, together with $^8\mathrm{B}$ asymptotic normalization coefficients from ab initio calculations. We obtain a zero-energy $S$-factor of $18.2 \pm 1.2~({\rm ANC~only})$ eV b. Given that this is a LO result it is consistent with the recommended value $S(0)=20.8\pm1.6$ eV b. Our computed $S(E)$ compares favorably with experimental data on $^7\mathrm{Be}(p,\gamma)^8\mathrm{B}$ for $E <0.4$ MeV. We emphasize the important role of proton-$^7\mathrm{Be}$ scattering parameters in determining the energy dependence of $S(E)$, and demonstrate that their present uncertainties significantly limit attempts to extrapolate these data to stellar energies.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2014
- DOI:
- 10.48550/arXiv.1401.4482
- arXiv:
- arXiv:1401.4482
- Bibcode:
- 2014arXiv1401.4482Z
- Keywords:
-
- Nuclear Theory;
- Astrophysics - High Energy Astrophysical Phenomena;
- Astrophysics - Solar and Stellar Astrophysics;
- Nuclear Experiment
- E-Print:
- 5 pages, 2 figures, and 3 tables