Tuning the critical temperature of cuprate superconductor films using self-assembled organic layers
Abstract
Many of the electronic properties of high-temperature cuprate superconductors (HTSC) are strongly dependent on the number of charge carriers put into the CuO$_2$ planes (doping). Superconductivity appears over a dome-shaped region of the doping-temperature phase diagram. The highest critical temperature (Tc) is obtained for the so-called "optimum doping". The doping mechanism is usually chemical; it can be done by cationic substitution. This is the case, for example, in La$_{2-x}$Sr$_x$CuO$_4$ where La3+ is replaced by Sr2+ thus adding a hole to the CuO$_2$ planes. A similar effect is achieved by adding oxygen as in the case of YBa$_2$Cu$_3$O$_{6+\delta}$ where $\delta$ represents the excess oxygen in the sample. In this paper we report on a different mechanism, one that enables the addition or removal of carriers from the surface of the HTSC. This method utilizes a self-assembled monolayer (SAM) of polar molecules adsorbed on the cuprate surface. In the case of optically active molecules, the polarity of the SAM can be modulated by shining light on the coated surface. This results in a light-induced modulation of the superconducting phase transition of the sample. The ability to control the superconducting transition temperature with the use of SAMs makes these surfaces practical for various devices such as switches and detectors based on high-Tc superconductors.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2014
- DOI:
- arXiv:
- arXiv:1401.3603
- Bibcode:
- 2014arXiv1401.3603C
- Keywords:
-
- Condensed Matter - Superconductivity;
- Condensed Matter - Materials Science;
- Condensed Matter - Strongly Correlated Electrons
- E-Print:
- Angewandte Chemie International Edition 51 (29), 7162-7165 (2012)