The General Stationary Gaussian Markov Process
Abstract
We find the class, ${\cal{C}}_k, k \ge 0$, of all zero mean stationary Gaussian processes, $Y(t), ~t \in \reals$ with $k$ derivatives, for which \begin{equation} Z(t) \equiv (Y^{(0)}(t), Y^{(1)}(t), \ldots, Y^{(k)}(t) ), ~ t \ge 0 \end{equation} \noindent is a $(k+1)$-vector Markov process. (here, $Y^{(0)}(t) = Y(t)$).
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2013
- DOI:
- arXiv:
- arXiv:1401.0251
- Bibcode:
- 2014arXiv1401.0251B
- Keywords:
-
- Mathematics - Probability
- E-Print:
- 13 pages, 0 figures