On injective resolutions of local cohomology modules
Abstract
Let $K$ be a field of characteristic zero and let $R = K[X_1,\ldots,X_n]$. Let $I$ be an ideal in $R$ and let $M = H^i_I(R)$ be the $i^{th}$-local cohomology module of $R$ with respect to $I$. Let $c = \ injdim \ M$. We prove that if $P$ is a prime ideal in $R$ with Bass number $\mu_c(P,M) > 0$ then $P$ is a maximal ideal in $R$.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2013
- DOI:
- 10.48550/arXiv.1312.5852
- arXiv:
- arXiv:1312.5852
- Bibcode:
- 2013arXiv1312.5852P
- Keywords:
-
- Mathematics - Commutative Algebra;
- Primary 13D45;
- Secondary 13D02;
- 13H10