Explicit smoothed prime ideals theorems under GRH
Abstract
Let $\psi_{\mathbb K}$ be the Chebyshev function of a number field $\mathbb K$. Let $\psi^{(1)}_{\mathbb K}(x):=\int_{0}^{x}\psi_{\mathbb K}(t)\,d t$ and $\psi^{(2)}_{\mathbb K}(x):=2\int_{0}^{x}\psi^{(1)}_{\mathbb K}(t)\,d t$. We prove under GRH explicit inequalities for the differences $|\psi^{(1)}_{\mathbb K}(x) - \tfrac{x^2}{2}|$ and $|\psi^{(2)}_{\mathbb K}(x) - \tfrac{x^3}{3}|$. We deduce an efficient algorithm for the computation of the residue of the Dedekind zeta function and a bound on small-norm prime ideals.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2013
- DOI:
- arXiv:
- arXiv:1312.4465
- Bibcode:
- 2013arXiv1312.4465G
- Keywords:
-
- Mathematics - Number Theory
- E-Print:
- Some misprints corrected, stronger conclusion in Th. 1.1. This is the final version which will appear in Mathematics of Computation