Proper Biconservative immersions into the Euclidean space
Abstract
In this paper, using the framework of equivariant differential geometry, we study proper $SO(p+1) \times SO(q+1)$-invariant biconservative hypersurfaces into the Euclidean space ${\mathbb R}^n$ ($n=p+q+2$) and proper $SO(p+1)$-invariant biconservative hypersurfaces into the Euclidean space ${\mathbb R}^n$ ($n=p+2$). Moreover, we show that, in these two classes of invariant families, there exists no proper biharmonic immersion.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2013
- DOI:
- 10.48550/arXiv.1312.3053
- arXiv:
- arXiv:1312.3053
- Bibcode:
- 2013arXiv1312.3053M
- Keywords:
-
- Mathematics - Differential Geometry
- E-Print:
- 20 pages, 3 figures