Cubic surfaces violating the Hasse principle are Zariski dense in the moduli scheme
Abstract
We construct new examples of cubic surfaces, for which the Hasse principle fails. Thereby, we show that, over every number field, the counterexamples to the Hasse principle are Zariski dense in the moduli scheme of non-singular cubic surfaces.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2013
- DOI:
- 10.48550/arXiv.1312.2572
- arXiv:
- arXiv:1312.2572
- Bibcode:
- 2013arXiv1312.2572E
- Keywords:
-
- Mathematics - Algebraic Geometry;
- Mathematics - Number Theory;
- Primary 11G35;
- Secondary 14G25;
- 14G05;
- 14J26;
- 14J10