On Landau's function g(n)
Abstract
Let $S_n$ be the symmetric group of $n$ letters; Landau considered the function $g(n)$ defined as the maximal order of an element of $S_n$. This function is non-decreasing. Let us define the sequence $n_1=1, n_2=2, n_3=3, n_4=4,n_5=5,n_6=7, ...,n_k$ such that $g(n_k) > g(n_k -1)$. It is known that $lim sup n_{k+1}-n_k =infinity$. Here it is shown that $lim inf n_{k+1}-n_k is finite.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2013
- DOI:
- 10.48550/arXiv.1312.2569
- arXiv:
- arXiv:1312.2569
- Bibcode:
- 2013arXiv1312.2569N
- Keywords:
-
- Mathematics - Number Theory
- E-Print:
- The Mathematics of Paul Erd\"os I, I (2013) 207- 220