Gaussian curvature in codimension > 1
Abstract
The Gaussian curvature $K$ is a fundamental geometric quantity discovered by Gauss in the case of surfaces embedded in $\mathbb{R}^3$. One can naturally extend the definition of the Gaussian curvature to arbitrary submanifolds of $\mathbb{R}^k$ so that the extrinsic interpretation of $K$, the Theorema Egregium and the Gauss-Bonnet Theorem still hold. We give a concise exposition of these classical facts.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2013
- DOI:
- 10.48550/arXiv.1312.2554
- arXiv:
- arXiv:1312.2554
- Bibcode:
- 2013arXiv1312.2554A
- Keywords:
-
- Mathematics - Differential Geometry