Recovering functions from the Paley-Wiener amalgam space
Abstract
In this paper we show that functions from the Paley-Wiener amalgam space $(PW,l^1)=\{f\in L^2(\mathbb{R}): \sum\|\hat{f}(\xi+2\pi m) \|_{L^2([-\pi,\pi])} < \infty\}$ enjoy similar recovery properties as the classical Paley-Wiener space. Specifically, if $\{\phi_\alpha(x): \alpha\in A\}$ is a regular family of interpolators and $\{x_n: n\in \mathbb{Z}\}$ is a complete interpolating sequence for $L^2([-\pi,\pi])$, then the family $\{ e^{2\pi i m x}\phi_{\alpha}(x-x_n): m,n\in \mathbb{Z}, \alpha\in A \} $ may be used to recover $f\in(PW,l^1)$.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2013
- DOI:
- 10.48550/arXiv.1311.5169
- arXiv:
- arXiv:1311.5169
- Bibcode:
- 2013arXiv1311.5169L
- Keywords:
-
- Mathematics - Functional Analysis;
- 41A15;
- 41A65;
- 42C15;
- 42C40
- E-Print:
- 5 pages