Point Configurations and Translations
Abstract
The spaces of point configurations on the projective line up to the action of $\mathrm{SL}(2,\mathbb K)$ and its maximal torus are canonically compactified by the Grothdieck-Knudsen and Losev-Manin moduli spaces $\overline M_{0,n}$ and $\overline L_n$ respectively. We examine the configuration space up to the action of the maximal unipotent group $\mathbb G_a\subseteq \mathrm{SL}(2,\mathbb K)$ and define an analogous compactification. For this we first assign a canonical quotient to the action of a unipotent group on a projective variety. Moreover, we show that similar to $\overline M_{0,n}$ and $\overline L_n$ this quotient arises in a sequence of blow-ups from a product of projective spaces.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2013
- DOI:
- 10.48550/arXiv.1311.2711
- arXiv:
- arXiv:1311.2711
- Bibcode:
- 2013arXiv1311.2711B
- Keywords:
-
- Mathematics - Algebraic Geometry;
- 14L24;
- 14L30
- E-Print:
- 26 pages, minor changes