Some remarks on Leibniz algebras whose semisimple part related with $sl_2$
Abstract
In this paper we identify the structure of complex finite-dimensional Leibniz algebras with associated Lie algebras $sl_2^1\oplus sl_2^2\oplus \dots \oplus sl_2^s\oplus R,$ where $R$ is a solvable radical. The classifications of such Leibniz algebras in the cases $dim R=2, 3$ and $dim I\neq 3$ have been obtained. Moreover, we classify Leibniz algebras with $L/I\cong sl_2^1\oplus sl_2^2$ and some conditions on ideal $I=id<[x,x] \ | \ x\in L>.$
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2013
- DOI:
- 10.48550/arXiv.1310.6594
- arXiv:
- arXiv:1310.6594
- Bibcode:
- 2013arXiv1310.6594C
- Keywords:
-
- Mathematics - Rings and Algebras;
- Mathematics - Representation Theory;
- 17A32;
- 17A60;
- 17B10;
- 17B20
- E-Print:
- 11 pages