Extensions of Poisson Structures on Singular Hypersurfaces
Abstract
Fix a codimension-1 affine Poisson variety $(X,\pi_X)$ in $\mathbb{C}^n$ with an isolated singularity at the origin. We characterize possible extensions of $\pi_X$ to $\mathbb{C}^n$ using the Koszul complex of the Jacobian ideal of $X$. In the particular case of a singular surface, we show that there always exists an extension of $\pi_X$ to $\mathbb{C}^n$.
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2013
- DOI:
- 10.48550/arXiv.1310.6083
- arXiv:
- arXiv:1310.6083
- Bibcode:
- 2013arXiv1310.6083M
- Keywords:
-
- Mathematics - Symplectic Geometry
- E-Print:
- 9 pages