Critical points of multidimensional random Fourier series: variance estimates
Abstract
To any positive number $\varepsilon$ and any nonnegative even Schwartz function $w:\mathbb{R}\to\mathbb{R}$ we associate the random function $u^\varepsilon$ on the $m$-torus $T^m_\varepsilon:=\mathbb{R}^m/(\varepsilon^{-1}\mathbb{Z})^m$ defined as the real part of the random Fourier series $$ \sum_{\nu\in\mathbb{Z}^m} X_{\nu,\varepsilon} \exp\bigl(\; 2\pi \varepsilon \sqrt{-1} \;(\nu\cdot \theta)\;\bigr),$$ where $X_{\nu,\varepsilon}$ are complex independent Gaussian random variables with variance $w(\varepsilon|\nu|)$. Let $N^\varepsilon$ denote the number of critical points of $u^\varepsilon$. We describe explicitly two constants $C, C'$ such that as $\varepsilon$ goes to the zero, the expectation of the random variable $\frac{1}{{\rm vol}\,(T^m_\varepsilon)}N^\varepsilon$ converges to $C$, while its variance is extremely small and behaves like $C'\varepsilon^{m}$.
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2013
- DOI:
- 10.48550/arXiv.1310.5571
- arXiv:
- arXiv:1310.5571
- Bibcode:
- 2013arXiv1310.5571N
- Keywords:
-
- Mathematics - Probability;
- Mathematical Physics;
- Mathematics - Analysis of PDEs;
- Mathematics - Differential Geometry;
- 60D05;
- 42B99;
- 15B25
- E-Print:
- 44 pages. Fixed typos, improved presentation, added references