An Extremely Luminous and Variable Ultraluminous X-Ray Source in the Outskirts of Circinus Observed with NuSTAR
Abstract
Following a serendipitous detection with the Nuclear Spectroscopic Telescope Array (NuSTAR), we present a multi-epoch spectral and temporal analysis of an extreme ultraluminous X-ray source (ULX) located in the outskirts of the Circinus galaxy, hereafter Circinus ULX5, including coordinated XMM-Newton+NuSTAR follow-up observations. The NuSTAR data presented here represent one of the first instances of a ULX reliably detected at hard (E > 10 keV) X-rays. Circinus ULX5 is variable on long time scales by at least a factor of ~5 in flux, and was caught in a historically bright state during our 2013 observations (0.3-30.0 keV luminosity of 1.6 × 1040 erg s-1). During this epoch, the source displayed a curved 3-10 keV spectrum, broadly similar to other bright ULXs. Although pure thermal models result in a high energy excess in the NuSTAR data, this excess is too weak to be modeled with the disk reflection interpretation previously proposed to explain the 3-10 keV curvature in other ULXs. In addition to flux variability, clear spectral variability is also observed. While in many cases the interpretation of spectral components in ULXs is uncertain, the spectral and temporal properties of all the high quality data sets currently available strongly support a simple disk-corona model reminiscent of that invoked for Galactic binaries, with the accretion disk becoming more prominent as the luminosity increases. However, although the disk temperature and luminosity are well correlated across all time scales currently probed, the observed luminosity follows LvpropT 1.70 ± 0.17, flatter than expected for simple blackbody radiation. The spectral variability displayed here is highly reminiscent of that observed from known Galactic black hole binaries (BHBs) at high luminosities. This comparison implies a black hole mass of ~90 M ⊙ for Circinus ULX5. However, given the diverse behavior observed from Galactic BHB accretion disks, this mass estimate is still uncertain. Finally, the limits placed on any undetected iron absorption features with the 2013 data set imply that we are not viewing the central regions of Circinus ULX5 through any extreme super-Eddington outflow.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- December 2013
- DOI:
- arXiv:
- arXiv:1310.2633
- Bibcode:
- 2013ApJ...779..148W
- Keywords:
-
- black hole physics;
- X-rays: binaries;
- X-rays: individual: Circinus ULX5;
- Astrophysics - High Energy Astrophysical Phenomena;
- Astrophysics - Cosmology and Nongalactic Astrophysics
- E-Print:
- 18 pages, 15 figures, accepted for publication in ApJ