Holomorphic functional calculus on upper triangular forms in finite von Neumann algebras
Abstract
The decompositions of an element of a finite von Neumann algebra into the sum of a normal operator plus an s.o.t.-quasinilpotent operator, obtained using the Haagerup--Schultz hyperinvariant projections, behave well with respect to holomorphic functional calculus.
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2013
- DOI:
- 10.48550/arXiv.1310.2524
- arXiv:
- arXiv:1310.2524
- Bibcode:
- 2013arXiv1310.2524D
- Keywords:
-
- Mathematics - Operator Algebras;
- 47C15
- E-Print:
- 5 pages