Exponential law for random subshifts of finite type
Abstract
In this paper we study the distribution of hitting times for a class of random dynamical systems. We prove that for invariant measures with super-polynomial decay of correlations hitting times to dynamically defined cylinders satisfy exponential distribution. Similar results are obtained for random expanding maps. We emphasize that what we establish is a quenched exponential law for hitting times.
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2013
- DOI:
- 10.48550/arXiv.1310.0336
- arXiv:
- arXiv:1310.0336
- Bibcode:
- 2013arXiv1310.0336R
- Keywords:
-
- Mathematics - Dynamical Systems;
- Mathematics - Probability
- E-Print:
- Accepted for publication in Stochastic Processes and their Applications