Global Well-Posedness of the Landau-Lifshitz-Gilbert equation for initial data in Morrey space
Abstract
We establish the global well-posedness of the Landau-Lifshitz-Gilbert equation in $\mathbb R^n$ for any initial data ${\bf m}_0\in H^1_*(\mathbb R^n,\mathbb S^2)$ whose gradient belongs to the Morrey space $M^{2,2}(\mathbb R^n)$ with small norm $\displaystyle\|\nabla {\bf m}_0\|_{M^{2,2}(\mathbb R^n)}$. The method is based on priori estimates of a dissipative Schrödinger equation of Ginzburg-Landau types obtained from the Landau-Lifshitz-Gilbert equation by the moving frame technique.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2013
- DOI:
- 10.48550/arXiv.1309.7426
- arXiv:
- arXiv:1309.7426
- Bibcode:
- 2013arXiv1309.7426L
- Keywords:
-
- Mathematics - Analysis of PDEs
- E-Print:
- 21 pages