Asymptotics for a nonlinear integral equation with a generalized heat kernel
Abstract
This paper is concerned with a nonlinear integral equation $$ (P)\qquad u(x,t)=\int_{{\bf R}^N}G(x-y,t)\varphi(y)dy+\int_0^t\int_{{\bf R}^N}G(x-y,t-s)f(y,s:u)dyds, \quad $$ where $N\ge 1$, $\varphi\in L^\infty({\bf R}^N)\cap L^1({\bf R}^N,(1+|x|^K)dx)$ for some $K\ge 0$. Here $G=G(x,t)$ is a generalization of the heat kernel. We are interested in the asymptotic expansions of the solution of $(P)$ behaving like a multiple of the integral kernel $G$ as $t\to\infty$.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2013
- DOI:
- 10.48550/arXiv.1309.7118
- arXiv:
- arXiv:1309.7118
- Bibcode:
- 2013arXiv1309.7118I
- Keywords:
-
- Mathematics - Analysis of PDEs
- E-Print:
- doi:10.1007/s00028-014-0237-3