On the solutions of a singular elliptic equation concentrating on two orthogonal spheres
Abstract
Let $A=\{x\in \R^{2m} : 0< a< |x| <b\}$ be an annulus. Consider the following singularly perturbed elliptic problem on $A$ \begin{equation} \begin{array}{lll} -\eps^2{\De u} + |x|^{\eta}u = |x|^{\eta}u^p, &\mbox{\qquad in} A \notag u>0 &\mbox{\qquad in} A u = 0 &\mbox{\qquad on} \partial A \end{array} %\label{a1} \end{equation} $1<p<2^*-1$. We shall prove the existence of a positive solution $u_\eps$ which concentrates on two different orthogonal spheres of dimension $(m-1)$ as $\eps\to 0$. We achieve this by studying a reduced problem on an annular domain in $\R^{m+1}$ and analyzing the profile of a two point concentrating solution in this domain.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2013
- DOI:
- 10.48550/arXiv.1309.5755
- arXiv:
- arXiv:1309.5755
- Bibcode:
- 2013arXiv1309.5755M
- Keywords:
-
- Mathematics - Analysis of PDEs
- E-Print:
- 13 pages