A counterexample to a theorem of Bremermann on Shilov boundaries
Abstract
We give a counterexample to the following theorem of Bremermann on Shilov boundaries: if $D$ is a bounded domain in $\mathbb C^n$ having a univalent envelope of holomorphy, say $\widetilde D$, then the Shilov boundary of $D$ with respect to the algebra $\mathcal A(D)$ coincides with the corresponding one for $\widetilde D$.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2013
- DOI:
- 10.48550/arXiv.1309.3657
- arXiv:
- arXiv:1309.3657
- Bibcode:
- 2013arXiv1309.3657J
- Keywords:
-
- Mathematics - Complex Variables;
- 32D10;
- 32D15;
- 32D25
- E-Print:
- Proc. Amer. Math. Soc. 143 (2015), 1675-1677