The distribution of values of short hybrid exponential sums on curves over finite fields
Abstract
Let $p$ be a prime number, $X$ be an absolutely irreducible affine plane curve over $\mathbb{F}_p$, and $g,f\in\mathbb{F}_p(x,y)$. We study the distribution of the values of the hybrid exponential sums S_n on $n\in\mathcal{I}$ for some short interval $\mathcal{I}$. We show that under some natural conditions the limiting distribution of the projections of the sum $S_n$, $n\in\mathcal{I}$ on any straight line through the origin is Gaussian as $p$ tends to infinity.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2013
- DOI:
- 10.48550/arXiv.1309.1726
- arXiv:
- arXiv:1309.1726
- Bibcode:
- 2013arXiv1309.1726M
- Keywords:
-
- Mathematics - Number Theory;
- 11G20;
- 11T23;
- 11T24
- E-Print:
- 20 pages