Coleman-Weinberg inflation in light of Planck
Abstract
We revisit a single field inflationary model based on Coleman-Weinberg potentials. We show that in small field Coleman-Weinberg inflation, the observed amplitude of perturbations needs an extremely small quartic coupling of the inflaton, which might be a signature of radiative origin. However, the spectral index obtained in a standard cosmological scenario turns out to be outside the 2σ region of the Planck data. When a non-standard cosmological framework is invoked, such as brane-world cosmology in the Randall-Sundrum model, the spectral index can be made consistent with Planck data within 1σ, courtesy of the modification in the evolution of the Hubble parameter in such a scheme. We also show that the required inflaton quartic coupling as well as a phenomenologically viable B-L symmetry breaking together with a natural electroweak symmetry breaking can arise dynamically in a generalized B-L extension of the Standard Model where the full potential is assumed to vanish at a high scale.
- Publication:
-
Physics Letters B
- Pub Date:
- March 2014
- DOI:
- 10.1016/j.physletb.2014.01.039
- arXiv:
- arXiv:1309.1695
- Bibcode:
- 2014PhLB..730...81B
- Keywords:
-
- High Energy Physics - Phenomenology;
- Astrophysics - Cosmology and Nongalactic Astrophysics;
- High Energy Physics - Theory
- E-Print:
- 16 pages, 15 figures, Version to be published in Phys. Lett. B