Probing the origin of the iron Kα line around stellar and supermassive black holes using X-ray polarimetry
Abstract
Asymmetric, broad iron lines are a common feature in the X-ray spectra of both X-ray binaries (XRBs) and type-1 Active Galactic Nuclei (AGN). It was suggested that the distortion of the Fe Kα emission results from Doppler and relativistic effects affecting the radiative transfer close to the strong gravitational well of the central compact object: a stellar mass black hole (BH) or neutron star (NS) in the case of XRBs, or a super massive black hole (SMBH) in the case of AGN. However, alternative approaches based on reprocessing and transmission of radiation through surrounding media also attempt to explain the line broadening. So far, spectroscopic and timing analyzes have not yet convinced the whole community to discriminate between the two scenarios. Here we study to which extent X-ray polarimetric measurements of black hole X-ray binaries (BHXRBs) and type-1 AGN could help to identify the possible origin of the line distortion. To do so, we report on recent simulations obtained for the two BH flavors and show that the proposed scenarios are found to behave differently in polarization degree and polarization angle. A relativistic origin for the distortion is found to be more probable in the context of BHXRBs, supporting the idea that the same mechanism should lead the way also for AGN. We show that the discriminating polarization signal could have been detectable by several X-ray polarimetry missions proposed in the past.
- Publication:
-
Advances in Space Research
- Pub Date:
- October 2014
- DOI:
- arXiv:
- arXiv:1309.1684
- Bibcode:
- 2014AdSpR..54.1458M
- Keywords:
-
- Astrophysics - High Energy Astrophysical Phenomena;
- Astrophysics - Cosmology and Extragalactic Astrophysics;
- General Relativity and Quantum Cosmology;
- 85-05;
- J.2.3;
- J.2.9
- E-Print:
- 24 pages, 6 figures, accepted for publication in Advances in Space Research