Ultra-compact High Velocity Clouds as Minihalos and Dwarf Galaxies
Abstract
We present dark matter minihalo models for the Ultra-Compact, High-Velocity H I Clouds (UCHVCs) recently discovered in the 21 cm ALFALFA survey. We assume gravitational confinement of 104 K H I gas by flat-cored dark-matter subhalos within the Local Group. We show that for flat cores, typical (median) tidally stripped cosmological subhalos at redshift z = 0 have dark-matter masses of ~107 M ⊙ within the central 300 pc (independent of total halo mass), consistent with the "Strigari mass scale" observed in low-luminosity dwarf galaxies. Flat-cored subhalos also resolve the mass discrepancy between simulated and observed satellites around the Milky Way. For the UCHVCs, we calculate the photoionization-limited hydrostatic gas profiles for any distance-dependent total observed H I mass and predict the associated (projected) H I half-mass radii, assuming the clouds are embedded in distant (d >~ 300 kpc) and unstripped subhalos. For a typical UCHVC (0.9 Jy km s-1), we predict physical H I half-mass radii of 0.18 to 0.35 kpc (or angular sizes of 0.'6 to 2.'1) for distances ranging from 300 kpc to 2 Mpc. As a consistency check, we model the gas-rich dwarf galaxy Leo T, for which there is a well-resolved H I column density profile and a known distance (420 kpc). For Leo T, we find that a subhalo with M 300 = 8 (± 0.2) × 106 M ⊙ best fits the observed H I profile. We derive an upper limit of P HIM <~ 150 cm-3 K for the pressure of any enveloping hot intergalactic medium gas at the distance of Leo T. Our analysis suggests that some of the UCHVCs may in fact constitute a population of 21 cm-selected but optically faint dwarf galaxies in the Local Group.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- November 2013
- DOI:
- arXiv:
- arXiv:1309.0815
- Bibcode:
- 2013ApJ...777..119F
- Keywords:
-
- dark matter;
- galaxies: dwarf;
- Galaxy: evolution;
- Galaxy: formation;
- Local Group;
- radio lines: galaxies;
- Astrophysics - Cosmology and Nongalactic Astrophysics;
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- 15 pages, 8 figures. Accepted for publication in ApJ. Figure 2 replaced in v2