Self-normalized Cramér type moderate deviations for the maximum of sums
Abstract
Let $X_1,X_2,...$ be independent random variables with zero means and finite variances, and let $S_n=\sum_{i=1}^nX_i$ and $V^2_n=\sum_{i=1}^nX^2_i$. A Cramér type moderate deviation for the maximum of the self-normalized sums $\max_{1\leq k\leq n}S_k/V_n$ is obtained. In particular, for identically distributed $X_1,X_2,...,$ it is proved that $P(\max_{1\leq k\leq n}S_k\geq xV_n)/(1-\Phi (x))\rightarrow2$ uniformly for $0<x\leq\mathrm{o}(n^{1/6})$ under the optimal finite third moment of $X_1$.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2013
- DOI:
- 10.48550/arXiv.1307.6044
- arXiv:
- arXiv:1307.6044
- Bibcode:
- 2013arXiv1307.6044L
- Keywords:
-
- Mathematics - Statistics Theory
- E-Print:
- Published in at http://dx.doi.org/10.3150/12-BEJ415 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm)