Upward and downward statistical continuities
Abstract
A real valued function $f$ defined on a subset $E$ of $\textbf{R}$, the set of real numbers, is statistically upward continuous if it preserves statistically upward half quasi-Cauchy sequences, is statistically downward continuous if it preserves statistically downward half quasi-Cauchy sequences; and a subset $E$ of $\textbf{R}$, is statistically upward compact if any sequence of points in $E$ has a statistically upward half quasi-Cauchy subsequence, is statistically downward compact if any sequence of points in $E$ has a statistically downward half quasi-Cauchy subsequence where a sequence $(x_{n})$ of points in $\textbf{R}$ is called statistically upward half quasi-Cauchy if \[ \lim_{n\rightarrow\infty}\frac{1}{n}|\{k\leq n: x_{k}-x_{k+1}\geq \varepsilon\}|=0 \] is statistically downward half quasi-Cauchy if \[ \lim_{n\rightarrow\infty}\frac{1}{n}|\{k\leq n: x_{k+1}-x_{k}\geq \varepsilon\}|=0 \] for every $\varepsilon>0$. We investigate statistically upward continuity, statistically downward continuity, statistically upward half compactness, statistically downward half compactness and prove interesting theorems. It turns out that uniform limit of a sequence of statistically upward continuous functions is statistically upward continuous, and uniform limit of a sequence of statistically downward continuous functions is statistically downward continuous.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2013
- DOI:
- 10.48550/arXiv.1307.2418
- arXiv:
- arXiv:1307.2418
- Bibcode:
- 2013arXiv1307.2418C
- Keywords:
-
- Mathematics - General Mathematics;
- 26A15;
- 40A05;
- 40A30
- E-Print:
- 25 pages. arXiv admin note: substantial text overlap with arXiv:1205.3674, arXiv:1103.1230, arXiv:1102.1531, arXiv:1305.0697