Quasilinear elliptic Hamilton-Jacobi equations on complete manifolds
Abstract
Let (Mn , g) be an n-dimensional complete, non-compact and connected Riemannian manifold, with Ricci tensor Riccg and sectional curvature Secg. Assume Riccg ⩾ (1 - n)B2, and either p > 2 and Secg (x) = o (dist2 (x , a)) when dist2 (x , a) → ∞ for a ∈ M, or 1 < p < 2 and Secg (x) ⩽ 0. If q > p - 1 > 0, any C1 solution of (E) -Δp u +| ∇u | q = 0 on M satisfies | ∇u (x) | ⩽c n , p , qB 1/q+1 - p for some constant c n , p , q > 0. As a consequence, there exists cn,p > 0 such that any positive p-harmonic function v on M satisfies v (a)e -cn,p Bdist (x , a) ⩽ v (x) ⩽ v (a)e cn,p Bdist (x , a) for any (a , x) ∈ M × M.
- Publication:
-
Comptes Rendus Mathematique
- Pub Date:
- June 2013
- DOI:
- 10.1016/j.crma.2013.06.007
- arXiv:
- arXiv:1305.6720
- Bibcode:
- 2013CRMat.351..445B
- Keywords:
-
- Mathematics - Analysis of PDEs;
- 35J92;
- 58C99
- E-Print:
- 6 pages