The homology of $\mathrm{tmf}$
Abstract
We compute the mod $2$ homology of the spectrum $\mathrm{tmf}$ of topological modular forms by proving a 2-local equivalence $\mathrm{tmf} \wedge DA(1) \simeq \mathrm{tmf}_1(3) \simeq BP\left \langle 2\right\rangle$, where $DA(1)$ is an eight cell complex whose cohomology "doubles" the subalgebra $\mathcal{A}(1)$ of the Steenrod algebra generated by $\mathrm{Sq}^1$ and $\mathrm{Sq}^2$. To do so, we give, using the language of stacks, a modular description of the elliptic homology of $DA(1)$ via level three structures. We briefly discuss analogs at odd primes and recover the stack-theoretic description of the Adams-Novikov spectral sequence for $\mathrm{tmf}$.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2013
- DOI:
- 10.48550/arXiv.1305.6100
- arXiv:
- arXiv:1305.6100
- Bibcode:
- 2013arXiv1305.6100M
- Keywords:
-
- Mathematics - Algebraic Topology;
- Mathematics - Algebraic Geometry
- E-Print:
- 25 pages. Substantially revised. To appear in Homology, Homotopy, and Applications