Smoothing of Commutators for a Hörmander Class of Bilinear Pseudodifferential Operators
Abstract
Commutators of bilinear pseudodifferential operators with symbols in the Hörmander class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$BS_{1, 0}^{1}$\end{document} and multiplication by Lipschitz functions are shown to be bilinear Calderón-Zygmund operators. A connection with a notion of compactness in the bilinear setting for the iteration of the commutators is also made.
- Publication:
-
Journal of Fourier Analysis and Applications
- Pub Date:
- April 2014
- DOI:
- 10.1007/s00041-013-9312-3
- arXiv:
- arXiv:1305.4307
- Bibcode:
- 2014JFAA...20..282B
- Keywords:
-
- Bilinear pseudodifferential operators;
- Bilinear Hörmander classes;
- Compact bilinear operators;
- Singular integrals;
- Calderón-Zygmund theory;
- Commutators;
- 35S05;
- 47G30;
- 42B15;
- 42B20;
- 42B25;
- 47B07;
- 47G99;
- Mathematics - Classical Analysis and ODEs
- E-Print:
- 16 pages