Modified-Gravity-GADGET: a new code for cosmological hydrodynamical simulations of modified gravity models
Abstract
We present a new massively parallel code for N-body and cosmological hydrodynamical simulations of modified gravity models. The code employs a multigrid-accelerated Newton-Gauss-Seidel relaxation solver on an adaptive mesh to efficiently solve for perturbations in the scalar degree of freedom of the modified gravity model. As this new algorithm is implemented as a module for the P-GADGET3 code, it can at the same time follow the baryonic physics included in P-GADGET3, such as hydrodynamics, radiative cooling and star formation. We demonstrate that the code works reliably by applying it to simple test problems that can be solved analytically, as well as by comparing cosmological simulations to results from the literature. Using the new code, we perform the first non-radiative and radiative cosmological hydrodynamical simulations of an f (R)-gravity model. We also discuss the impact of active galactic nucleus feedback on the matter power spectrum, as well as degeneracies between the influence of baryonic processes and modifications of gravity.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- November 2013
- DOI:
- arXiv:
- arXiv:1305.2418
- Bibcode:
- 2013MNRAS.436..348P
- Keywords:
-
- methods: numerical;
- cosmology: theory;
- Astrophysics - Cosmology and Nongalactic Astrophysics
- E-Print:
- 14 pages, 6 figures, submitted to MNRAS