Stein's method and a quantitative Lindeberg CLT for the Fourier transforms of random vectors
Abstract
We use a multivariate version of Stein's method to establish a quantitative Lindeberg CLT for the Fourier transforms of random $N$-vectors. We achieve this by deducing a specific integral representation for the Hessian matrix of a solution to the Stein equation with test function $e_t(x) = \exp(- i \sum_{k=1}^N t_k x_k)$, where $t,x \in \mathbb{R}^N$.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2013
- DOI:
- 10.48550/arXiv.1304.1934
- arXiv:
- arXiv:1304.1934
- Bibcode:
- 2013arXiv1304.1934B
- Keywords:
-
- Mathematics - Probability;
- 60F05
- E-Print:
- 17 pages