On Conic Fourier Multipliers
Abstract
We prove a weighted inequality which controls conic Fourier multiplier operators in terms of lacunary directional maximal operators. By bounding the maximal operators, this enables us to conclude that the multiplier operators are bounded on $L^p(\mathbb{R}^3)$ with $1<p<\infty$.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2013
- DOI:
- 10.48550/arXiv.1304.1324
- arXiv:
- arXiv:1304.1324
- Bibcode:
- 2013arXiv1304.1324C
- Keywords:
-
- Mathematics - Classical Analysis and ODEs;
- 42B25
- E-Print:
- 11 pages, estimates made more precise and references added