Gaussian process models for periodicity detection
Abstract
We consider the problem of detecting and quantifying the periodic component of a function given noise-corrupted observations of a limited number of input/output tuples. Our approach is based on Gaussian process regression which provides a flexible non-parametric framework for modelling periodic data. We introduce a novel decomposition of the covariance function as the sum of periodic and aperiodic kernels. This decomposition allows for the creation of sub-models which capture the periodic nature of the signal and its complement. To quantify the periodicity of the signal, we derive a periodicity ratio which reflects the uncertainty in the fitted sub-models. Although the method can be applied to many kernels, we give a special emphasis to the Matérn family, from the expression of the reproducing kernel Hilbert space inner product to the implementation of the associated periodic kernels in a Gaussian process toolkit. The proposed method is illustrated by considering the detection of periodically expressed genes in the arabidopsis genome.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2013
- DOI:
- 10.48550/arXiv.1303.7090
- arXiv:
- arXiv:1303.7090
- Bibcode:
- 2013arXiv1303.7090D
- Keywords:
-
- Mathematics - Statistics Theory
- E-Print:
- in PeerJ Computer Science, 2016