Generalised Gagliardo-Nirenberg inequalities using weak Lebesgue spaces and BMO
Abstract
Using elementary arguments based on the Fourier transform we prove that for $1 \leq q < p < \infty$ and $s \geq 0$ with $s > n(1/2-1/p)$, if $f \in L^{q,\infty}(\R^n) \cap \dot{H}^s(\R^n)$ then $f \in L^p(\R^n)$ and there exists a constant $c_{p,q,s}$ such that \[ \|f\|_{L^p} \leq c_{p,q,s} \|f\|_{L^{q,\infty}}^\theta \|f\|_{\dot H^s}^{1-\theta}, \] where $1/p = \theta/q + (1-\theta)(1/2-s/n)$. In particular, in $\R^2$ we obtain the generalised Ladyzhenskaya inequality $\|f\|_{L^4}\le c\|f\|_{L^{2,\infty}}^{1/2}\|f\|_{\dot H^1}^{1/2}$. We also show that for $s=n/2$ the norm in $\|f\|_{\dot H^{n/2}}$ can be replaced by the norm in BMO. As well as giving relatively simple proofs of these inequalities, this paper provides a brief primer of some basic concepts in harmonic analysis, including weak spaces, the Fourier transform, the Lebesgue Differentiation Theorem, and Calderon-Zygmund decompositions.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2013
- DOI:
- 10.48550/arXiv.1303.6351
- arXiv:
- arXiv:1303.6351
- Bibcode:
- 2013arXiv1303.6351M
- Keywords:
-
- Mathematics - Analysis of PDEs