Complex interpolation of couple (X, BMO) for $A_1$-regular lattices
Abstract
Recent results of A. Lerner concerning certain properties of the Fefferman-Stein maximal function are applied to show that $(\BMO, X)_\theta = X^\theta$, $0 < \theta < 1$, for a Banach lattice $X$ of measurable functions on $\mathbb R^n$ satisfying the Fatou property such that $X$ has order continuous norm and the Hardy-Littlewood maximal operator $M$ is bounded in $(X^\alpha)'$ for some $0 < \alpha \leqslant 1$.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2013
- DOI:
- 10.48550/arXiv.1303.6347
- arXiv:
- arXiv:1303.6347
- Bibcode:
- 2013arXiv1303.6347R
- Keywords:
-
- Mathematics - Functional Analysis;
- 46B70;
- 46E30;
- 42B25