Spectrum of the Laplacian on radial graphs
Abstract
We prove that if $M$ is a complete hypersurface in $\mathbb{R}^{n+1}$ which is graph of a real radial function, then the spectrum of the Laplace operator on M is the interval $[0,\infty)$.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2013
- DOI:
- 10.48550/arXiv.1303.3293
- arXiv:
- arXiv:1303.3293
- Bibcode:
- 2013arXiv1303.3293B
- Keywords:
-
- Mathematics - Differential Geometry
- E-Print:
- Involve 10 (2017) 677-690