Geometry of quantum dynamics and a time-energy uncertainty relation for mixed states
Abstract
In this paper we establish important relations between Hamiltonian dynamics and Riemannian structures on phase spaces for unitarily evolving finite level quantum systems in mixed states. We show that the energy dispersion (i.e. $1/\hbar$ times the path integral of the energy uncertainty) of a unitary evolution is bounded from below by the length of the evolution curve. Also, we show that for each curve of mixed states there is a Hamiltonian for which the curve is a solution to the corresponding von Neumann equation, and the energy dispersion equals the curve's length. This allows us to express the distance between two mixed states in terms of a measurable quantity, and derive a time-energy uncertainty relation for mixed states. In a final section we compare our results with an energy dispersion estimate by Uhlmann.
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2013
- DOI:
- 10.48550/arXiv.1302.1844
- arXiv:
- arXiv:1302.1844
- Bibcode:
- 2013arXiv1302.1844A
- Keywords:
-
- Quantum Physics;
- Mathematical Physics
- E-Print:
- 5 pages