The Cayley isomorphism property for groups of order 8p
Abstract
For every prime $p>3$ we prove that $Q \times \mathbb{Z}_p$ and $\mathbb{Z}_2^3 \times \mathbb{Z}_p$ are DCI- groups. This result completes the description of CI-groups of order $8p$.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2013
- DOI:
- arXiv:
- arXiv:1301.6797
- Bibcode:
- 2013arXiv1301.6797S
- Keywords:
-
- Mathematics - Group Theory;
- Mathematics - Combinatorics