On eigenvalues of Seidel matrices and Haemers' conjecture
Abstract
For a graph $G$, let $S(G)$ be the Seidel matrix of $G$ and $\te_1(G),...,\te_n(G)$ be the eigenvalues of $S(G)$. The Seidel energy of $G$ is defined as $|\te_1(G)|+...+|\te_n(G)|$. Willem Haemers conjectured that the Seidel energy of any graph with $n$ vertices is at least $2n-2$, the Seidel energy of the complete graph with $n$ vertices. Motivated by this conjecture, we prove that for any $\al$ with $0<\al<2$, $|\te_1(G)|^\al+...+|\te_n(G)|^\al\g (n-1)^\al+n-1$ if and only if $|{\rm det} S(G)|\g n-1$. This, in particular, implies the Haemers' conjecture for all graphs $G$ with $|{\rm det} S(G)|\g n-1$.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2013
- DOI:
- 10.48550/arXiv.1301.0075
- arXiv:
- arXiv:1301.0075
- Bibcode:
- 2013arXiv1301.0075G
- Keywords:
-
- Mathematics - Combinatorics;
- 05C50