C-vectors and dimension vectors for cluster-finite quivers
Abstract
Let $(Q,W)$ be a quiver with a non degenerate potential. We give a new description of the \textbf{c}-vectors of $Q$. We use it to show that, if $Q$ is mutation equivalent to a Dynkin quiver, then the set of positive $\mathbf{c}$-vectors of the cluster algebra associated to $Q^{\text{op}}$ coincides with the set of dimension vectors of the indecomposable modules over the Jacobian algebra of $(Q,W)$.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2012
- DOI:
- arXiv:
- arXiv:1212.1846
- Bibcode:
- 2012arXiv1212.1846N
- Keywords:
-
- Mathematics - Representation Theory