Classification of maximal transitive prolongations of super-Poincaré algebras
Abstract
Let $V$ be a complex vector space with a non-degenerate symmetric bilinear form and $\mathbb S$ an irreducible module over the Clifford algebra $Cl(V)$ determined by this form. A supertranslation algebra is a $\mathbb Z$-graded Lie superalgebra $\mathfrak m=\mathfrak{m}_{-2}\oplus\mathfrak{m}_{-1}$, where $\mathfrak{m}_{-2}=V$ and $\mathfrak{m}_{-1}=\mathbb S\oplus\cdots\oplus\mathbb{S}$ is the direct sum of an arbitrary number $N\geq 1$ of copies of $\mathbb S$, whose bracket $[\cdot,\cdot]|_{\mathfrak{m}_{-1}\otimes \mathfrak{m}_{-1}}:\mathfrak{m}_{-1}\otimes\mathfrak{m}_{-1}\rightarrow\mathfrak{m}_{-2}$ is symmetric, $\mathfrak{so}(V)$-equivariant and non-degenerate (that is the condition "$s\in\mathfrak{m}_{-1}, [s,\mathfrak{m}_{-1}]=0$" implies $s=0$). We consider the maximal transitive prolongations in the sense of Tanaka of supertranslation algebras. We prove that they are finite-dimensional for $\dim V\geq3$ and classify them in terms of super-Poincaré algebras and appropriate $\mathbb Z$-gradings of simple Lie superalgebras.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2012
- DOI:
- arXiv:
- arXiv:1212.1826
- Bibcode:
- 2012arXiv1212.1826A
- Keywords:
-
- Mathematics - Rings and Algebras;
- Mathematical Physics;
- 17B70 (Primary) 17B81;
- 81T60 (Secondary)
- E-Print:
- 32 pages, v2: general presentation improved, corrected several typos. Proofs and results unchanged. Final version to appear in Adv. Math