Efficient Community Detection in Large Networks using Content and Links
Abstract
In this paper we discuss a very simple approach of combining content and link information in graph structures for the purpose of community discovery, a fundamental task in network analysis. Our approach hinges on the basic intuition that many networks contain noise in the link structure and that content information can help strengthen the community signal. This enables ones to eliminate the impact of noise (false positives and false negatives), which is particularly prevalent in online social networks and Web-scale information networks. Specifically we introduce a measure of signal strength between two nodes in the network by fusing their link strength with content similarity. Link strength is estimated based on whether the link is likely (with high probability) to reside within a community. Content similarity is estimated through cosine similarity or Jaccard coefficient. We discuss a simple mechanism for fusing content and link similarity. We then present a biased edge sampling procedure which retains edges that are locally relevant for each graph node. The resulting backbone graph can be clustered using standard community discovery algorithms such as Metis and Markov clustering. Through extensive experiments on multiple real-world datasets (Flickr, Wikipedia and CiteSeer) with varying sizes and characteristics, we demonstrate the effectiveness and efficiency of our methods over state-of-the-art learning and mining approaches several of which also attempt to combine link and content analysis for the purposes of community discovery. Specifically we always find a qualitative benefit when combining content with link analysis. Additionally our biased graph sampling approach realizes a quantitative benefit in that it is typically several orders of magnitude faster than competing approaches.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2012
- DOI:
- 10.48550/arXiv.1212.0146
- arXiv:
- arXiv:1212.0146
- Bibcode:
- 2012arXiv1212.0146R
- Keywords:
-
- Computer Science - Social and Information Networks;
- Physics - Physics and Society;
- H.2.8