Bounded compositions on scaling invariant Besov spaces
Abstract
For $0 < s < 1 < q < \infty$, we characterize the homeomorphisms $\varphi : \real^n \to \real^n$ for which the composition operator $f \mapsto f \circ \varphi$ is bounded on the homogeneous, scaling invariant Besov space $\dot{B}^s_{n/s,q}(\real^n)$, where the emphasis is on the case $q\not=n/s$, left open in the previous literature. We also establish an analogous result for Besov-type function spaces on a wide class of metric measure spaces as well, and make some new remarks considering the scaling invariant Triebel-Lizorkin spaces $\dot{F}^s_{n/s,q}(\real^n)$ with $0 < s < 1$ and $0 < q \leq \infty$.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2012
- DOI:
- arXiv:
- arXiv:1209.6477
- Bibcode:
- 2012arXiv1209.6477K
- Keywords:
-
- Mathematics - Classical Analysis and ODEs;
- Mathematics - Functional Analysis;
- 46E35;
- 30C65;
- 47B33
- E-Print:
- 20 pages