The wave function of quantum de Sitter
Abstract
We consider quantum general relativity in three dimensions with a positive cosmological constant. The Hartle-Hawking wave function is computed as a function of metric data at asymptotic future infinity. The analytic continuation from Euclidean Anti-de Sitter space provides a natural integration contour in the space of metrics, allowing us — with certain assumptions — to compute the wave function exactly, including both perturbative and non-perturbative effects. The resulting wave function is a non-normalizable function of the conformal structure of future infinity which is infinitely peaked at geometries where I+ becomesinfinitelyanisotropic. Weinterpretthisasanon-perturbativeinstabilityofde Sitter space in three dimensional Einstein gravity.
- Publication:
-
Journal of High Energy Physics
- Pub Date:
- November 2012
- DOI:
- 10.1007/JHEP11(2012)096
- arXiv:
- arXiv:1209.5757
- Bibcode:
- 2012JHEP...11..096C
- Keywords:
-
- Models of Quantum Gravity;
- Nonperturbative Effects;
- Classical Theories of Gravity;
- High Energy Physics - Theory;
- General Relativity and Quantum Cosmology
- E-Print:
- 20 pages, 3 figures