Equivalence principle violation in Vainshtein screened two-body systems
Abstract
In massive gravity, galileon, and braneworld explanations of cosmic acceleration, force modifications are screened by nonlinear derivative self-interactions of the scalar field mediating that force. Interactions between the field of a central body (“A”) and an orbiting body (“B”) imply that body B does not move as a test body in the field of body A if the orbit is smaller than the Vainshtein radius of body B. We find through numerical solutions of the joint field at the position of B that the A-field Laplacian is nearly perfectly screened by the B self-field, whereas first derivative or net forces are reduced in a manner that scales with the mass ratio of the bodies as (MB/MA)3/5. The latter causes mass-dependent reductions in the universal perihelion precession rate due to the fifth force, with deviations for the Earth-Moon system at the ∼4% level. In spite of universal coupling, which preserves the microscopic equivalence principle, the motion of macroscopic screened bodies depends on their mass providing in principle a means for testing the Vainshtein mechanism.
- Publication:
-
Physical Review D
- Pub Date:
- March 2013
- DOI:
- 10.1103/PhysRevD.87.063525
- arXiv:
- arXiv:1209.3364
- Bibcode:
- 2013PhRvD..87f3525H
- Keywords:
-
- 98.80.-k;
- 04.50.Kd;
- 04.80.Cc;
- Cosmology;
- Modified theories of gravity;
- Experimental tests of gravitational theories;
- High Energy Physics - Theory;
- Astrophysics - Cosmology and Extragalactic Astrophysics;
- General Relativity and Quantum Cosmology
- E-Print:
- 18 pages, 9 figures