On the Escape of a Random Walk From Two Pieces of a Tripartite Set
Abstract
Let $\{A, B, C\}$ be a partition of a sample space $\Omega$. For a random walk $S_n = x + \sum_{j=1}^n X_j$ starting at $x \in A$, we find estimates for the Green's function $G_{A \cup B}(x,y)$ and the hitting time $E^x(T_C)$ for $x, y \in A \cup B$, with interest in the case where $C$ "separates" $A$ and $B$ in a sense (e.g. the probability of jumping from $A$ to $B$, or vice versa, before hitting $C$, is small).
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2012
- DOI:
- arXiv:
- arXiv:1209.1761
- Bibcode:
- 2012arXiv1209.1761C
- Keywords:
-
- Mathematics - Probability;
- 60J05
- E-Print:
- 6 pages